Javier Orduz

Contents

Objective

Concepts

Protocols and methods for encryption

One-Time-Pad protocol

Toy model

Mathematical foundations for Modern Cryptography in the Quantum Era

Javier Orduz

¹EC, Qmexico²

13

December 12, 2024

Javier Orduz

Contents

Objective

Concepts

Protocols and methods for encryption

One-Time-Pac

Toy mode

1 Contents

- 2 Objectives
- 3 Concepts
- 4 Protocols and methods for encryption
 - One-Time-Pad protocol
- 5 Toy model

Objectives

Javier Orduz

Contents

Objectives

Concepts

Protocols and methods for encryption

One-Time-Pao protocol

Tov mode

Objective

To show the most relevant concepts for cybersecurity and explore their counterpart in the quantum context.

Javier Orduz

Content

Objectiv

Concepts

Protocols and methods for encryption One-Time-Pad

Toy mode

Definition 1 (Information security)

The protection of information and information systems from unauthorized access, use, disclosure, disruption, modification, or destruction in order to provide confidentiality, integrity, and availability .

Javier Orduz

Contents

Objectiv

Concepts

Protocols and methods for encryption One-Time-Pad

Toy mode

Definition 2 (Cryptology)

Initially, the field encompassed both **cryptography** and **cryptanalysis**. Today, cryptology in the U.S. Government is the collection and/or exploitation of foreign communications and non-communications emitters, known as SIGINT, and solutions, products, and services to ensure the **availability**, **integrity**, **authentication**, **confidentiality**, and **non-repudiation** of national security telecommunications and information systems, known as IA.

Javier Orduz

Content:

Objectiv

Concepts

Concepts

methods for encryption

One-Time-Pac protocol

roy modei

Definition 3 (Cryptography)

Literature shows different definitions, and some of these are

- The discipline that embodies the principles, means, and methods for transforming data to hide their semantic content, prevent unauthorized use or prevent undetected modification.
- It is the science of secret writing to hide the information

Cryptography

Cryptography

Assymetric Ciphers

Protocols

Javier Orduz

Contents

Objectiv

Concepts

Protocols and methods for

One-Time-Pa

protocol

Definition 4 (Shannon Entropy)

It is given by

$$S = -\sum_{i=1}^{k} p_i \log_2 p_i \tag{1}$$

The entropy of uncertainty of a random variable X with probabilities p_i, \ldots, p_n .

Javier Orduz

Contents

Objective

Concepts

Protocols and methods for encryption

One-Time-Pac protocol

Toy mode

Definition 5 (Hilbert space)

It is an abstract space where some vectors live and are represented by $|v\rangle$. The Hilbert space has the same properties as a vector space, but we also allow **complex numbers.**

Javier Orduz

Concepts

Definition 6 (Basis)

It is a set of vectors that define a space.

- 1. Orthogonal. The dot product is defined as zero between two different vectors in the basis.
- 2. Nonorthogonal. The dot product is defined as nonzero between two different vectors in the basis.
- 3. Canonical and noncanonical. Bases such as $\{|0\rangle, |1\rangle\}$ are called canonical, and (Bell) bases such as $\left\{\frac{|0\rangle+|1\rangle}{\sqrt{2}},\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right\}$

Javier Orduz

0011001100

Objective

Concepts

Protocols and methods for encryption

One-Time-Pao protocol

Toy mod

Definition 7 (Von Neumann Entropy)

In the quantum information context,

$$H_V = -\sum_{i=1}^n \lambda_i \log_2 \lambda_i \tag{2}$$

Where λ_i are the eigenvalues of a density operator .

Javier Orduz

Protocols and methods for encryption

Definition 8 (Trapdoor function, trapdoor one-way function)

A function $f: \{0,1\}^* \to \{0,1\}^*$ is called **one-way** if the following two conditions hold.

- 1. There exists a polynomial-time algorithm A such that A(x) = f(x) for every $x \in \{0, 1\}^*$
- 2. For every probabilistic polynomial-time algorithm A', every polynomial p, and all sufficiently large n,

$$\Pr[A'(f(x), 1^n) \in f^{-1}(f(x))] < \frac{1}{p(n)}.$$
 (3)

(some) Concepts (Continued)

Javier Orduz

Contents

Objectiv

Concepts

Protocols and

methods for encryption

One-Time-Pa protocol

T.........

Definition 9 (Trapdoor function, trapdoor one-way function)

We additionally have the following two definitions,

- 1. A function that is easy to compute yet hard to invert without extra information is called a **trapdoor function** .
- 2. A function that is easily computed, and the calculation of its inverse is infeasible unless certain privileged information is known.

Javier Orduz

Protocols and methods for encryption

Definition 10 (Protocol)

A **set of rules** used by two or more communicating entities that describe the message order and data structures for information exchanged between the entities is called **protocol** .

lavier Orduz

Javiel Oldu

Objective

Concepts

Protocols and methods for encryption

One-Time-Pad

- .

Definition 11 (One-Time-Pad protocol)

The protocol encrypts a message using a public channel and uses the XOR operation.

(some) Quantum Concepts (Continued)

Javier Orduz

Contents

Objectiv

Concepts

Protocols an methods for encryption

One-Time-Pad protocol

Toy mode

We use B the text in binary is $H=1001000_2=72_{10}$ and ciphertext in binary system is $Z=1011010_2=90_{10}$. The subscripts refer to binary and decimal systems. We should notice

$$B = DEC(C, K) = DEC(ENC(B, K), K)$$

$$= DEC(B \oplus K, K)$$

$$= B \oplus K \oplus K$$

$$= B$$
(4)

Example

Javier Orduz

Contents

Obiectiv

Concepts

methods for encryption

One-Time-Pad protocol

Toy model

1. Encryption: To get the ciphertext, C

$$C = ENC(B, K) = B \oplus K = \underbrace{\begin{array}{c} b_5 b_4 b_3 b_2 b_1 b_0 \\ \oplus k_5 k_4 k_3 k_2 k_1 k_0 \\ \hline c_5 c_4 c_3 c_2 c_1 c_0 \end{array}}$$
(5)

Example (continued)

Javier Orduz

Objective

Conconto

Concepts

methods for encryption

One-Time-Pad protocol

2. Decryption: To get the text, *B*

$$B = DEC(C, K) = C \oplus K = \underbrace{\frac{c_5 c_4 c_3 c_2 c_1 c_0}{b_5 k_4 k_3 k_2 k_1 k_0}}_{c_5 b_4 b_3 b_2 b_1 b_0}$$
(6)

Example (continued)

Javier Orduz

Content

Objectiv

Concepts

Protocols an methods for

One-Time-Pad protocol

Toy mod

1. Encryption.

$$\begin{array}{c} 1001000 \to H \\ \oplus 0010010 \to 18 \\ \hline 1011010 \to Z \end{array}$$

2. Decryption

$$\begin{array}{c} 1011010 \ \to \ \mathsf{Z} \\ \oplus \ 0010010 \ \to \ \mathsf{18} \\ \hline 1001000 \ \to \ \mathsf{H} \end{array}$$

Javier Orduz

One-Time-Pad protocol

Definition 12 (Quantum key exchange (QKE))

It is the idea of exploiting quantum mechanics to improve classical protocols (see Definition 10).

Javier Orduz

Objecti.

C

Concept

methods for encryption

One-Time-Pad protocol

Toy mode

Definition 13 (BB84 protocol)

Let A and B use two points to send information which should be two people; person-A implements two different orthogonal bases (see Definition 6) to send information.

Javier Orduz

NI. to a character

Concepts

Protocols an

methods for encryption

One-Time-Pad protocol

Toy mode

Definition 14 (B92 protocol)

This protocol implements one nonorthogonal basis (see Definition 6) to send information .

Applications

Javier Orduz

Contents

Objectiv

Concepts

Protocols and methods for encryption One-Time-Pad

Toy model

Figure: Graph for n = 5 and k = 2: This represents a network with n = 5 users, where k = 2 users are engaged in pairwise communication.

- We will swap points and
- edges

Applications (continued)

Javier Orduz

Content

Objectiv

Concepts

Protocols an methods for encryption

One-Time-Pa

Toy model

Conclusions and Discussion

Javier Orduz

_

C

Concept

Protocols and methods for encryption One-Time-Pad

Toy model

- This paper examined key concepts in cybersecurity and their counterparts in the quantum domain.
- It also provided foundational insights into prominent protocols in classical and quantum cryptography.

Future directions

Javier Orduz

Objectiv

Concepts

Protocols and methods for encryption One-Time-Pad

Tov model

Future work aims to expand on these fundamental concepts, incorporating emerging ideas from quantum computing, machine learning, and deep learning to contribute to developing next-generation cryptographic methods, particularly in the post-quantum cryptography era.

Thank you!

